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ABSTRACT

This paper presents the influence of active damping on the dynamic response Article

of a high- static-low-dynamic stiffness (HSLDS) isolation system. First, a History
model of a single-degree- of-freedom (SDOF) HSLDS isolation system is

presented, and the approximate solution to the equation of motion is determined Received:
by the Harmonic Balance method (HBM), to the first order expansion. Then, 03/10/2022
the effect of active damping on the motion transmissibility performance is
studied, accompanied by a comparison with passive damping to demonstrate
the advantages of the actively damped HSLDS isolation system. In particular,
the boundary of the stability region of the system is determined based on  accepted:
Floquet’s theory to demonstrate the effect of active damping on the system 15/04/2023
transmissibility performance. The results have shown that the increment of

active damping produces more dynamically stable system. Published:
03/05/2023
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INTRODUCTION

Undesirable vibration always become a challenging issue for many mechanical structures.
It is not only affecting the equipment functionality, but also may has adverse effects on
human comfort and safety. One of the common methods in reducing undesired vibration
is by inserting an isolator between the vibration source and the receiver. Its performance
can be improved by having soft stiffness, such that the isolation bandwidth increases.
However, if the isolator is linear, this design will result a proportionately higher static
deflection issue [1].

Recently, passive nonlinear isolators that has High-Static-Low-Dynamic-
Stiffness (HSLDS) characteristic have been considered by many researchers [2-3]. This
is due to its capability in obtaining wide isolation bandwidth frequency by lowering the
natural frequency of the isolation mount, whilst maintaining the same static load bearing
capacity. Carella [4] and Ahn [5] have studied the static and dynamic behavior of HSLDS
vibration isolator from the combination of positive and negative stiffness mechanism.
Shaw [6] investigated steady state response of HSLDS isolator that is built by bistable
composite plate.
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Many studies have shown that dynamic motion of the HSLDS vibration isolator
can be approximately described by the Duffing equation with linear and cubic stiffness
terms. In fact, the resonance peak can be become large and jump phenomenon can occur
at the resonant frequency as the base amplitude or force excitation increases [7]. It is
evident that, the inherent nonlinearity of HSLDS should be controlled since it could result
undesirable conditions in practical engineering. Lu et al. [8] and Donmez [9] have shown
that nonlinear damping could be used to improve HSDLS isolator performance by
reducing the transmissibility around the resonance frequencies without affecting its
performance at high frequencies.

An alternative method for reducing structural vibrations is by active control. The
concept of active control for modification of the system response has been reported in
[10-11]. It has been stated that, the mass, damping and stiffness of the system can be
independently modified depending on the type of feedback controller. In the case of
damping modification, velocity feedback should be applied as the control strategy. [12-
13].

Despite the growing interest in nonlinear isolator [1-3] and active vibration
isolation [9- 10], only a few researchers have yet seriously examined the combination of
HSLDS isolator with active control. In [14-15], the application of time-delayed linear
displacement and cubic displacement feedback control of HSLDS isolator are studied.
The authors showed that vibration isolation performance around the resonance frequency
band under both force and base excitation is improved. However, there is still lack of
literature in discussing the effect of active damping control on the performance of HSLDS
isolator. In this paper, an investigation of the active damping effect on the HSLDS
isolation system is presented. The harmonic balance method (HBM) is applied to derive
an approximate solution of the amplitude frequency characteristic equation, and Floquet
theory is employed to derive the boundary stability region on the obtained motion
transmissibility. The effect of active damping on the motion transmissibility performance
of the HSLDS isolation system is investigated analytically. All the obtained results are
compared with an equivalent fully passive HSLDS isolation system.

The organization of this paper is as follows. First, the model of an actively damped
HSLDS isolation system is presented, and its approximate solution to the equation of
motion is derived in Section 1. In Section 2, the effect of active damping on the system
transmissibility performance is investigated. In addition, the effect of active damping on
the stability region of the plotted system transmissibility performance is also presented.
Finally, conclusions are drawn in the final section.

MATHEMATICAL MODELLING OF AN ACTIVELY DAMPED HIGH-
STATIC-LOW-DYNAMIC STIFFNESS ISOLATION SYSTEM

A single-degree-of-freedom (SDOF) HSLDS vibration isolator with active damping is
shown in Figure 1. The system is subjected to base excitation, where x(t) and y(t)
represent the mass and base displacement respectively. The model consists of a mass m
which is mounted on a nonlinear spring (linear stiffness ki and cubic stiffness ks), and
viscous damper ¢ in parallel with a secondary force fs for active damping control
purpose.
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mass, m
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Figure 1. Single-degree-of-freedom (SDOF) model of an actively damped HLDS
isolation system.

The equation of motion of the system which is subjected to harmonic base excitation can
be expressed as
mx+c(x—y) +ki(x —y) + ks(x —y)° + £s(£) = 0 1)

Note that, the control force f; which is generated by the actuator is set to be proportional
to the absolute velocity of the mass for the active damping control purpose.

fs = Cskyx (2)

where cgy,, is the control gains from the controller. Therefore, the equation of motion of
the system can be written as

mi+c(x —y) + oyt +ki(x —y) +ks(x—y)* =0 €))
The motion of the base and the displacement of the mass are given asy = Y cos( wt) and
x = X cos(wt + 0) respectively. Y is the amplitude of the base excitation, X is the
displacement amplitude of the mass (both are real positive values), w is the excitation
frequency, 6 is the phase, and t is time.

By letting the relative displacement between the mass and the base be u = x — y, EqQ. (3)
can be simplified to become

mii + (c + Csky)u + kyu + kau® = —my — oy (4)
which can be written in non-dimensional form as

"+ 2(C + {ay) + (1 + KA + all® = 0% cos(027) + 20, 2 sin(027)  (5)
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< _ Csky 2 _ ki _ kgY? _w . Ap U
where { = T (sky = Tmon On” = &= = oo U= wpt, 1" = T
' = % = % and a prime denotes differentiation with respect to non-dimensional
n

time 7. Note that ais a factor that determines the degree of nonlinearity of the system and
is dependent on the magnitude of the base excitation Y, the linear stiffness k, and the
cubic stiffness k5. It is clear that the system defaults to a linear system if a = 0.
Meanwhile, w, is the natural frequency of the system when the amplitude of oscillations
are small enough, so that the nonlinear term is negligible.

In this study the HBM to a first order expansion is applied with assumption that the
response is harmonic and at the excitation frequency, such that

i = Ucos(Q1 + @) (6)

where U and ¢ are the amplitude and phase of the relative displacement with respect to
the base motion.By substituting Eq. (6) into Eq. (5), and neglecting the cos 3 (27) term
leads to a cubic equation for U2 with frequency dependent coefficients,

Za?0° +2a(1 - 02)0* +[(1 - 0% + 40 + ) 202]0% = 0% + 43,02 (7)

Eqgn. (7) can be alternatively expressed as a quadratic in 22 with amplitude dependent
coefficients, where 2 is the frequency ratio,

(02 = 1)0* + [(4(C + Lay)? — 2)0% = 2al* — 433, | 0% + (Zal + 0)2 =0 (8

The two solutions to Eq. (8) are given by
_ psi\/q—s
0= N4@2-1) ©)

ps = 3a0* + 4 (1-2(C + o)) U7 + 833, (10)

where

and
¢s = (9a% — 48a(¢ + {y) ) U°
+ (24&(1 - ZZskyz) - 64(( + Qky)z (1 —-(¢+ (sky)z)) o
+(16(1 + 481y 2) = 128851, 2 (8 + Gosy)”) U2 + 64835 (11)

of which only the real solutions, where they exist, are of interest.
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RESULTS AND DISCUSSION

The Effect of Active Damping on the System Motion Transmissibility

In this study, the absolute motion transmissibility is used as the isolation performance
measure. It is defined as the ratio between the mass and base absolute displacement, in
steady-state vibration and at a given frequency excitation. Therefore, based on the
absolute displacement, X =0+ y which can be expressed as

£ = Ucos(01 + @) + cos(271) (12)

The absolute motion transmissibility can be obtained by finding the magnitude of X, such
that

207(1-02 + 3 a2 -4, (C+£)
. - 4 (13)
X =4|1+U°" + Qz+4§ 2
sky

For comparison purpose, the effect of passive damping and active damping in the
absolutemotion transmissibility is demonstrated in Figure 2. with the nonlinearity value
is set to o =1.33x10~*to represent a system with mild nonlinearity [4]. The black solid
line andthe bold blue line represents the motion transmissibility with passive damping
ratio of { =0.01 (low damping value) and £ =0.1 (high damping value) respectively. The
results show that the increased passive damping ratio has reduced the resonance peak
but hashad a detrimental effect on isolation at high frequencies.

In contrast, by applying active damping to the system, the resonance peak is
suppressed without affecting the motion transmissibility performance at high frequencies.
This is shown in the red dashed line in both plots which represents the active damping
system. The total effective damping at the resonance in the active damping system is
¢=0.1, i.e. the sum of the active and passive damping values. This shows that by applying
active damping to the system, an effective vibration isolations system which has a low
resonance peak, low high frequency transmissibility and a large isolation range is
achieved.
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Figure 2. Motion transmissibility of passively and actively damped HSLDS
isolationsystem (o =1.33x10-*). Passively damped; back solid line (£ =0.01), blue
bold line (¢ =0.1), and actively damped; red dashed line ( =0.01 and sy =0.09).

The Effect of Active Damping on the System Stability
The stability of the periodic solution of the HSLDS isolation system in this work is based

on Floguet theory. Therefore, the periodic solution of the system is assumed as

~

Ucos(t + @) + (1) (14)

where £ is a small disturbance or perturbation applied to the response of the system. By
substituting Eq. (14) into Eq. (5), and following the HBM will leads to a linear variational
equation

g"+2(§+§sky)5'+(1+3aUZC0529)g=0 (15)
Assume the general solution of Eg. (15) to be a periodic function as

g:eM(F’lCOS(QT‘F(ﬁ)‘*‘Pz Sin(QT—’_(p)) (16)

where Pi1and P> are Fourier coefficients of the first order expansion. The solution is
unstable by definition if A is positive, and stable if 1 is negative. As a result, the solution
to the linear variational equation tends to zero with increasing z , if the value of 1 has a
negative real part, which corresponds to a stable periodic solution.

The effect of active damping in the stability of the system can be observed by
substituting Eg. (16) into Eq. (15) such that the resulting expression may be written in
matrix form as

2 2 9 12
P-4 2(¢ 48, )2+ 14 ol 20(A+(¢+4)) (Plj:[oj (17)

—2Q(A+(g+gsky)) /12—02+2(5+gsky)/1+1+%a02
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where the determinant of Eq. (17) can be expressed as

At +4(§+§sky)ﬂ3+(4(§+§sky)2 +2+207 +3aUz)/12+

(18)
2 a2 2 9 s 2 3 5o 2 o
(2(¢ +¢u ) (24297 +3a0 ))/1+(1—Q +7al j[l—g +7 a0 J+4(g+gsky) 0?=0
Hence, the solution for A is given by
ﬂ:—(§+§sw)i\/((§+é§sw)2_gz_1—SaUZJi\/4QZ[1—(§+§Sky)2+3a02j+(3auzjz
2 2 4 (19)

Subsequently, the boundary of the stability region can be obtained by letting 4 =0 in Eq.
(19) and solved for Q to yield

_ _ 22”2 2 2__§ 72 §“22
Qm—J(l 2(6+¢uy) +50U jtz\/(mcsky) [(m@w) 1~ al j+(8au j 0

Generally, the plots of Eq. (20) can be defined as stability parabola curves. By plotting it
over the transmissibility curve of given by Eqg. (13), the boundary of stability region can
be observed as demonstrated in Figure 3.
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Figure 3. Stability parabola curves in the relative motion transmissibility plot of an
actively damped HSLDS isolation system («=1.33x10",¢ =0.01) .Relative motion

transmissibility curve; passive system (blue solid line), actively damped system with
¢4y =0.005 (red solid line), stability parabola curves; passive system (blue dashed line),

actively damped system with £, =0.005 (red dashed line).

By putting the values of U™ and Q into Eq. (19), the value of the real part of A isonly
positive, when it is in the enclosed curve of the dashed line. This represents the instability
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region of the system. For example, for a fully passive system, the instability region is
enclosed by the blue dashed line. Meanwhile, for an actively damped system with
€ 4 = 0.005, the instability region is enclosed by the red dashed line. In Figure 4 and
Figure 5, the instability region for the respective fully passive and active damping
system,are presented in the absolute motion transmissibility plot with the shaded
area as determined in Eg. (20). Note that, the instability region decreases when
the active damping is applied, which demonstrates a more dynamically stable system.
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Figure 4. Instability region in the absolute motion transmissibility plot of a HSLDS
isolation system (« =1.33x10",¢ =0.01). The red dashed line represents unstable

parabola, where the instability region is shaded.
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Figure 5. Instability region in the absolute motion transmissibility plot of an actively
damped HSLDS isolation system (a=1.33x10",¢ =0.01, &, =0.005). The red dashed line

represents unstable parabola, where the instability region is shaded.
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By referring to both figures (Figure 4 and Figure 5), it can be seen that there are
two intersection points that occur between the transmissibility curves with the
corresponding parabola stability curves. The first intersection point occurs at the peak of
the transmissibility curve, which corresponds to the jump down frequency. Meanwhile,
the second intersection point happens on the non-resonant branch which represents the
jump up frequency. Therefore, the region between the jump up and jump down
frequencies which is enclosed by the parabola plot is the unstable equilibrium state. When
active damping is applied, the transmissibility peak is reduced and will results in a
reduced jump down frequency. This is illustrated in Figure 5, where an active damping
value of 0.005 is applied to the system. In addition, by comparing Figure 4 and Figure 5,
it can be observed that the active damping changes the jump down frequency drastically,
but with only very slight changes for the jump up frequency.

It is also interesting to note that, if the total damping of the system is negative
where ¢+, <0, the real part of the solution of Eq. (19) will become positive. As a

result, the system becomes totally unstable. The boundary of stability that determined by
the parabola stability curves in Eq. (20), then has the instability region inside and outside
the enclosed curves.

CONCLUSIONS

In this paper, the effect of active damping on the response of HSLDS isolator subjected
to harmonic excitation is studied based on SDOF HSLDS isolation model. The active
damping was generated by a control force from an actuator which is set to be proportional
to the absolute velocity of the isolated mass. The results show that by applying active
damping to the system, large bending resonance curve of HSLDS isolator that detriments
isolation performance could be suppressed, without compromising the isolation
bandwidth at high frequencies. Therefore, an actively damped HSLDS isolator could be
an effective vibration isolations system which has a low resonance peak, low high
frequency transmissibility and a large isolation range. This contrasted with the
employment of passive damping where the increment of passive damping ratio has
reduced the resonance peak but has had a detrimental effect on isolation at high
frequencies. In addition, the determined stability parabola curves on the motion
transmissibility plot has shown that the instability region decreases when active damping
is applied, which demonstrates a more dynamically stable system.
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