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INTRODUCTION 

 

Undesirable vibration always become a challenging issue for many mechanical structures. 

It is not only affecting the equipment functionality, but also may has adverse effects on 

human comfort and safety. One of the common methods in reducing undesired vibration 

is by inserting an isolator between the vibration source and the receiver. Its performance 

can be improved by having soft stiffness, such that the isolation bandwidth increases. 

However, if the isolator is linear, this design will result a proportionately higher static 

deflection issue [1]. 

Recently, passive nonlinear isolators that has High-Static-Low-Dynamic-

Stiffness (HSLDS) characteristic have been considered by many researchers [2-3]. This 

is due to its capability in obtaining wide isolation bandwidth frequency by lowering the 

natural frequency of the isolation mount, whilst maintaining the same static load bearing 

capacity. Carella [4] and Ahn [5] have studied the static and dynamic behavior of HSLDS 

vibration isolator from the combination of positive and negative stiffness mechanism. 

Shaw [6] investigated steady state response of HSLDS isolator that is built by bistable 

composite plate. 
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This paper presents the influence of active damping on the dynamic response 

of a high- static-low-dynamic stiffness (HSLDS) isolation system. First, a 

model of a single-degree- of-freedom (SDOF) HSLDS isolation system is 

presented, and the approximate solution to the equation of motion is determined 

by the Harmonic Balance method (HBM), to the first order expansion. Then, 

the effect of active damping on the motion transmissibility performance is 

studied, accompanied by a comparison with passive damping to demonstrate 

the advantages of the actively damped HSLDS isolation system. In particular, 

the boundary of the stability region of the system is determined based on 

Floquet’s theory to demonstrate the effect of active damping on the system 

transmissibility performance. The results have shown that the increment of 

active damping produces more dynamically stable system. 
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Many studies have shown that dynamic motion of the HSLDS vibration isolator 

can be approximately described by the Duffing equation with linear and cubic stiffness 

terms. In fact, the resonance peak can be become large and jump phenomenon can occur 

at the resonant frequency as the base amplitude or force excitation increases [7]. It is 

evident that, the inherent nonlinearity of HSLDS should be controlled since it could result 

undesirable conditions in practical engineering. Lu et al. [8] and Donmez [9] have shown 

that nonlinear damping could be used to improve HSDLS isolator performance by 

reducing the transmissibility around the resonance frequencies without affecting its 

performance at high frequencies. 

An alternative method for reducing structural vibrations is by active control. The 

concept of active control for modification of the system response has been reported in 

[10-11]. It has been stated that, the mass, damping and stiffness of the system can be 

independently modified depending on the type of feedback controller. In the case of 

damping modification, velocity feedback should be applied as the control strategy. [12-

13]. 

Despite the growing interest in nonlinear isolator [1-3] and active vibration 

isolation [9- 10], only a few researchers have yet seriously examined the combination of 

HSLDS isolator with active control. In [14-15], the application of time-delayed linear 

displacement and cubic displacement feedback control of HSLDS isolator are studied. 

The authors showed that vibration isolation performance around the resonance frequency 

band under both force and base excitation is improved. However, there is still lack of 

literature in discussing the effect of active damping control on the performance of HSLDS 

isolator. In this paper, an investigation of the active damping effect on the HSLDS 

isolation system is presented. The harmonic balance method (HBM) is applied to derive 

an approximate solution of the amplitude frequency characteristic equation, and Floquet 

theory is employed to derive the boundary stability region on the obtained motion 

transmissibility. The effect of active damping on the motion transmissibility performance 

of the HSLDS isolation system is investigated analytically. All the obtained results are 

compared with an equivalent fully passive HSLDS isolation system. 

The organization of this paper is as follows. First, the model of an actively damped 

HSLDS isolation system is presented, and its approximate solution to the equation of 

motion is derived in Section 1. In Section 2, the effect of active damping on the system 

transmissibility performance is investigated. In addition, the effect of active damping on 

the stability region of the plotted system transmissibility performance is also presented. 

Finally, conclusions are drawn in the final section. 

 

 

MATHEMATICAL MODELLING OF AN ACTIVELY DAMPED HIGH- 

STATIC-LOW-DYNAMIC STIFFNESS ISOLATION SYSTEM 

 

A single-degree-of-freedom (SDOF) HSLDS vibration isolator with active damping is 

shown in Figure 1. The system is subjected to base excitation, where x(t) and y(t) 

represent the mass and base displacement respectively. The model consists of a mass m 

which is mounted on a nonlinear spring (linear stiffness k1 and cubic stiffness k3), and 

viscous damper c in parallel with a secondary force fs for active damping control 

purpose. 
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Figure 1. Single-degree-of-freedom (SDOF) model of an actively damped HLDS 

isolation system. 

 

 

The equation of motion of the system which is subjected to harmonic base excitation can 

be expressed as  

 𝑚𝑥̈ + 𝑐(𝑥̇ − 𝑦̇) + 𝑘1(𝑥 − 𝑦) + 𝑘3(𝑥 − 𝑦)3 + 𝑓𝑠(𝑡) = 0            (1)

        

Note that, the control force 𝑓𝑠 which is generated by the actuator is set to be proportional 

to the absolute velocity of the mass for the active damping control purpose. 

 

               𝑓𝑠 = 𝑐𝑠𝑘𝑦𝑥̇                                                          (2)  

 

where 𝑐𝑠𝑘𝑦 is the control gains from the controller. Therefore, the equation of motion of 

the system can be written as 

 

𝑚𝑥̈ + 𝑐(𝑥̇ − 𝑦̇) + 𝑐𝑠𝑘𝑦𝑥̇ + 𝑘1(𝑥 − 𝑦) + 𝑘3(𝑥 − 𝑦)3 = 0                   (3) 

                   

The motion of the base and the displacement of the mass are given as𝑦 = 𝑌 𝑐𝑜𝑠(𝜔𝑡) and 

𝑥 = 𝑋 𝑐𝑜𝑠(𝜔𝑡 + 𝜃) respectively. 𝑌 is the amplitude of the base excitation, 𝑋 is the 

displacement amplitude of the mass (both are real positive values), 𝜔 is the excitation 

frequency, 𝜃 is the phase, and 𝑡 is time. 

 

By letting the relative displacement between the mass and the base be 𝑢 = 𝑥 − 𝑦, Eq. (3) 

can be simplified to become 

 

                           𝑚𝑢̈ + (𝑐 + 𝑐𝑠𝑘𝑦)𝑢̇ + 𝑘1𝑢 + 𝑘3𝑢
3 = −𝑚𝑦̈ − 𝑐𝑠𝑘𝑦𝑦̇                   (4) 

 

which can be written in non-dimensional form as 

 

        𝑢̂″ + 2(𝜁 + 𝜁𝑠𝑘𝑦)𝑢̂
′ + 𝑢̂(1 + 𝐾)𝑢̂ + 𝛼𝑢̂3 = 𝛺2 𝑐𝑜𝑠(𝛺𝜏) + 2𝜁𝑠𝑘𝑦𝛺 𝑠𝑖𝑛( 𝛺𝜏)       (5) 

x(t) 

y(t) 
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where 𝜁 =
𝑐

2𝑚𝜔𝑛
, 𝜁𝑠𝑘𝑦 =

𝑐𝑠𝑘𝑦

2𝑚𝜔𝑛
, 𝜔𝑛

2 =
𝑘1

𝑚
, 𝛼 =

𝑘3𝑌
2

𝑘1
, 𝛺 =

𝜔

𝜔𝑛
,  𝜏 = 𝜔𝑛𝑡,   𝑢̂″ =

𝑢̈

𝜔𝑛
2𝑌

,  

𝑢̂′ =
𝑢̇

𝜔𝑛𝑌
, 𝑢̂ =

𝑢

𝑌
,   and a prime denotes differentiation with respect to non-dimensional 

time 𝜏.  Note that 𝛼is a factor that determines the degree of nonlinearity of the system and 

is dependent on the magnitude of the base excitation 𝑌, the linear stiffness 𝑘1 and the 

cubic stiffness 𝑘3. It is clear that the system defaults to a linear system if 𝛼 = 0. 
Meanwhile, 𝜔𝑛 is the natural frequency of the system when the amplitude of oscillations 

are small enough, so that the nonlinear term is negligible.  

 

In this study the HBM to a first order expansion is applied with assumption that the 

response is harmonic and at the excitation frequency, such that 

 

                                                     𝑢̂ = 𝑈̂cos(Ω𝜏 + 𝜑)                                                  (6) 

                                             

where 𝑈̑ and 𝜑 are the amplitude and phase of the relative displacement with respect to 

the base motion.By substituting Eq. (6) into Eq. (5), and neglecting the 𝑐𝑜𝑠 3 (𝛺𝜏) term 

leads to a cubic equation for 𝑈̂2 with frequency dependent coefficients, 

 
9

16
𝛼2𝑈̂6 +

3

2
𝛼(1 − 𝛺2)𝑈̂4 + [(1 − 𝛺2)2 + 4(𝜁 + 𝜁𝑠𝑘𝑦)

2𝛺2]𝑈̂2 = 𝛺4 + 4𝜁𝑠𝑘𝑦
2 𝛺2       (7) 

 

Eqn. (7) can be alternatively expressed as a quadratic in 𝛺2 with amplitude dependent 

coefficients, where 𝛺 is the frequency ratio, 

 

(𝑈̂2 − 1)𝛺4 + [(4(𝜁 + 𝜁𝑠𝑘𝑦)
2 − 2)𝑈̂2 −

3

2
𝛼𝑈̂4 − 4𝜁𝑠𝑘𝑦

2 ] 𝛺2 + (
3

4
𝛼𝑈̂3 + 𝑈̂)

2

= 0    (8) 

 

The two solutions to Eq. (8) are given by 

 

                                                           𝛺 = √
𝑝𝑠±√𝑞𝑠

4(𝑈2−1)
                                 (9) 

 

where  

                                   𝑝𝑠 = 3𝛼𝑈̂4 + 4(1 − 2(𝜁 + 𝜁𝑠𝑘𝑦)
2
) 𝑈̂2 + 8𝜁𝑠𝑘𝑦

2               (10)

        

and 

𝑞𝑠 = (9𝛼2 − 48𝛼(𝜁 + 𝜁𝑠𝑘𝑦)
2
) 𝑈̂6

+ (24𝛼(1 − 2𝜁𝑠𝑘𝑦
2) − 64(𝜁 + 𝜁𝑠𝑘𝑦)

2
(1 − (𝜁 + 𝜁𝑠𝑘𝑦)

2
)) 𝑈̂4 

+(16(1 + 4𝜁𝑠𝑘𝑦
2) − 128𝜁𝑠𝑘𝑦

2(𝜁 + 𝜁𝑠𝑘𝑦)
2
) 𝑈̂2 + 64𝜁𝑠𝑘𝑦

4          (11) 

 

of which only the real solutions, where they exist, are of interest.  
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RESULTS AND DISCUSSION 

 

The Effect of Active Damping on the System Motion Transmissibility 

In this study, the absolute motion transmissibility is used as the isolation performance 

measure.  It is defined as the ratio between the mass and base absolute displacement, in 

steady-state vibration and at a given frequency excitation. Therefore, based on the 

absolute displacement, ˆ ˆ ˆx u y= +  which can be expressed as 

 

 

𝑥̂ = 𝑈̂ 𝑐𝑜𝑠(𝛺𝜏 + 𝜑) + 𝑐𝑜𝑠(𝛺𝜏)                                    (12) 

 

      

The absolute motion transmissibility can be obtained by finding the magnitude of x̂ , such 

that 

 

                 

2 2 2

2

2 2

3 ˆ2 1
4

ˆ 4 ( )
ˆ1

4
ˆ

sky sky

sky

U U

X U

  



 
− + −



+





+

= + +             (13) 

 

For comparison purpose, the effect of passive damping and active damping in the 

absolute motion transmissibility is demonstrated in Figure 2. with the nonlinearity value 

is set to  = 1.3310−4 to represent a system with mild nonlinearity [4]. The black solid 

line and the bold blue line represents the motion transmissibility with passive damping 

ratio of  = 0.01 (low damping value) and  = 0.1 (high damping value) respectively. The 

results show that the increased passive damping ratio has reduced the resonance peak 

but has had a detrimental effect on isolation at high frequencies. 

In contrast, by applying active damping to the system, the resonance peak is 

suppressed without affecting the motion transmissibility performance at high frequencies. 

This is shown in the red dashed line in both plots which represents the active damping 

system. The total effective damping at the resonance in the active damping system is

0.1 = , i.e. the sum of the active and passive damping values. This shows that by applying 

active damping to the system, an effective vibration isolations system which has a low 

resonance peak, low high frequency transmissibility and a large isolation range is 

achieved. 
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Figure 2. Motion transmissibility of passively and actively damped HSLDS 

isolation system ( = 1.3310−4 ) . Passively damped; back solid line ( = 0.01) , blue 

bold line ( = 0.1) , and actively damped; red dashed line ( = 0.01 and  sky = 0.09). 

 

The Effect of Active Damping on the System Stability 

The stability of the periodic solution of the HSLDS isolation system in this work is based 

on Floquet theory. Therefore, the periodic solution of the system is assumed as 

                                  𝑢̂ = 𝑈̂ 𝑐𝑜𝑠(𝛺𝜏 + 𝜑) + 𝜀(𝜏)                                     (14) 

where Ɛ is a small disturbance or perturbation applied to the response of the system. By 

substituting Eq. (14) into Eq. (5), and following the HBM will leads to a linear variational 

equation  

                           ( ) ( )2 2ˆ2 1 3 cos 0sky U       + + + + =                           (15) 

 

Assume the general solution of Eq. (15) to be a periodic function as 

 

                             
( ) ( )( )1 2cos sine P P    =  + +  +

                    (16)     

    

where  P1 and  P2 are Fourier coefficients of the first order expansion. The solution is 

unstable by definition if  λ is positive, and stable if λ is negative. As a result, the solution 

to the linear variational equation tends to zero with increasing τ , if the value of λ has a 

negative real part, which corresponds to a stable periodic solution. 

The effect of active damping in the stability of the system can be observed by 

substituting Eq. (16) into Eq. (15) such that the resulting expression may be written in 

matrix form as 

 

  
( ) ( )( )

( )( ) ( )

2 2 2

1

2 2 2 2

9 ˆ2 1 2
04

3 0ˆ2 2 1
4

sky sky

sky sky

U
P

P
U

       

       

 
− + + + +  + +    

=    
    −  + + − + + + + 
 

        (17) 
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where the determinant of Eq. (17) can be expressed as 

 

( ) ( )( )

( )( )( ) ( )

2
4 3 2 2 2

2
2 2 2 2 2 2 2

ˆ4 4 2 2 3

9 3ˆ ˆ ˆ2 2 2 3 1 1 4 0
4 4

sky sky

sky sky

U

U U U

       

       

+ + + + + +  + +

  
+ +  + + − + − + + +  =  

  

       (18) 

 

Hence, the solution for   is given by 

 

( ) ( ) ( )
2

2 2
2 2 2 2 23 3 3ˆ ˆ ˆ1 4 1

2 2 4
sky sky skyU U U         

     
= − +  + − − −   − + + +     

             (19)

        

Subsequently, the boundary of the stability region can be obtained by letting 0 =  in Eq. 

(19) and solved for   to yield 

 

( ) ( ) ( )
2

2 2 2
2 2 23 3 3ˆ ˆ ˆ1 2 2 1

2 2 8
unst sky sky skyU U U        

     
 = − + +  + + − − +     

            (20)

         

Generally, the plots of Eq. (20) can be defined as stability parabola curves. By plotting it 

over the transmissibility curve of given by Eq. (13), the boundary of stability region can 

be observed as demonstrated in Figure 3. 

 

 

 

 

 

 

 

 

 

Figure 3. Stability parabola curves in the relative motion transmissibility plot of an 

actively damped HSLDS isolation system 4( 1.33 10 , 0.01) −=  = .Relative motion 

transmissibility curve; passive system (blue solid line), actively damped system with 

0.005sky =  (red solid line), stability parabola curves; passive system (blue dashed line), 

actively damped system with 0.005sky =  (red dashed line). 

 

By putting the values of Uˆ and  into Eq. (19), the value of the real part of  is only 

positive, when it is in the enclosed curve of the dashed line. This represents the instability 
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region of the system. For example, for a fully passive system, the instability region is 

enclosed by the blue dashed line. Meanwhile, for an actively damped system with 

 sky = 0.005, the instability region is enclosed by the red dashed line. In Figure 4 and 

Figure 5, the instability region for the respective fully passive and active damping 

system, are presented in the absolute motion transmissibility plot with the shaded 

area as determined in Eq. (20). Note that, the instability region decreases when 

the active damping is applied, which demonstrates a more dynamically stable system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Instability region in the absolute motion transmissibility plot of a HSLDS 

isolation system 4( 1.33 10 , 0.01). −=  =  The red dashed line represents unstable 

parabola, where the instability region is shaded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Instability region in the absolute motion transmissibility plot of an actively 

damped HSLDS isolation system 4( 1.33 10 , 0.01, 0.005).sky  −=  = = The red dashed line 

represents unstable parabola, where the instability region is shaded. 
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By referring to both figures (Figure 4 and Figure 5), it can be seen that there are 

two intersection points that occur between the transmissibility curves with the 

corresponding parabola stability curves. The first intersection point occurs at the peak of 

the transmissibility curve, which corresponds to the jump down frequency. Meanwhile, 

the second intersection point happens on the non-resonant branch which represents the 

jump up frequency. Therefore, the region between the jump up and jump down 

frequencies which is enclosed by the parabola plot is the unstable equilibrium state. When 

active damping is applied, the transmissibility peak is reduced and will results in a 

reduced jump down frequency. This is illustrated in Figure 5, where an active damping 

value of 0.005 is applied to the system. In addition, by comparing Figure 4 and Figure 5, 

it can be observed that the active damping changes the jump down frequency drastically, 

but with only very slight changes for the jump up frequency. 

It is also interesting to note that, if the total damping of the system is negative 

where 0sky +  , the real part of the solution of Eq. (19) will become positive. As a 

result, the system becomes totally unstable. The boundary of stability that determined by 

the parabola stability curves in Eq. (20), then has the instability region inside and outside 

the enclosed curves. 

 

CONCLUSIONS 

 

In this paper, the effect of active damping on the response of HSLDS isolator subjected 

to harmonic excitation is studied based on SDOF HSLDS isolation model. The active 

damping was generated by a control force from an actuator which is set to be proportional 

to the absolute velocity of the isolated mass. The results show that by applying active 

damping to the system, large bending resonance curve of HSLDS isolator that detriments 

isolation performance could be suppressed, without compromising the isolation 

bandwidth at high frequencies. Therefore, an actively damped HSLDS isolator could be 

an effective vibration isolations system which has a low resonance peak, low high 

frequency transmissibility and a large isolation range. This contrasted with the 

employment of passive damping where the increment of passive damping ratio has 

reduced the resonance peak but has had a detrimental effect on isolation at high 

frequencies. In addition, the determined stability parabola curves on the motion 

transmissibility plot has shown that the instability region decreases when active damping 

is applied, which demonstrates a more dynamically stable system. 
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